Regression conformal prediction produces prediction intervals that are valid, i.e., the probability of excluding the correct target value is bounded by a predefined confidence level. The most important criterion when comparing conformal regressors is efficiency; the prediction intervals should be as tight (informative) as possible. In this study, the use of random forests as the underlying model for regression conformal prediction is investigated and compared to existing state-of-the-art techniques, which are based on neural networks and k-nearest neighbors. In addition to their robust predictive performance, random forests allow for determining the size of the prediction intervals by using out-of-bag estimates instead of requiring a separate calibration set. An extensive empirical investigation, using 33 publicly available data sets, was undertaken to compare the use of random forests to existing stateof-the-art conformal predictors. The results show that the suggested approach, on almost all confidence levels and using both standard and normalized nonconformity functions, produced significantly more efficient conformal predictors than the existing alternatives.