Computational tools for analyzing biochemical phenomena are becoming increasingly important. Recently, high-level formal languages for modeling and simulating biochemical reactions have been proposed. These languages make the formal modeling of complex reactions accessible to domain specialists outside of theoretical computer science. This research explores the use of genetic programming to automate the construction of models written in one such language. Given a description of desired timecourse data, the goal is for genetic programming to construct a model that might generate the data. The language investigated is Kahramanogullari's and Cardelli's PIM language. The PIM syntax is defined in a grammar-guided genetic programming system. All time series generated during simulations are described by statistical feature tests, and the fitness evaluation compares feature proximity between the target and candidate solutions. Target PIM models of varying complexity are used as target expressions for genetic programming. Results were very successful in all cases. One reason for this success is the compositional nature of PIM, which is amenable to genetic program search.