2020
DOI: 10.1016/j.asoc.2019.105927
|View full text |Cite
|
Sign up to set email alerts
|

Evolving granular feedback linearization: Design, analysis, and applications

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
3
0
3

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
1
1

Relationship

1
6

Authors

Journals

citations
Cited by 18 publications
(6 citation statements)
references
References 13 publications
0
3
0
3
Order By: Relevance
“…Contudo, em sistemas físicosé comum que as funções f (x) e g(x) sejam parcialmente ou completamente desconhecidas, impossibilitando a obtenção da dinâmica desejada para a malha fechada (10), levando o sistema em malha fechadaà perda de desempenho ou, até mesmo,à instabilidade (Oliveira et al, 2020…”
Section: Controle Evolutivo Granular Robustounclassified
See 2 more Smart Citations
“…Contudo, em sistemas físicosé comum que as funções f (x) e g(x) sejam parcialmente ou completamente desconhecidas, impossibilitando a obtenção da dinâmica desejada para a malha fechada (10), levando o sistema em malha fechadaà perda de desempenho ou, até mesmo,à instabilidade (Oliveira et al, 2020…”
Section: Controle Evolutivo Granular Robustounclassified
“…O controlador ReGFL possui como principal característica a inclusão de robustez (Oliveira et al, 2020) e adaptabilidade (Oliveira et al, 2019a,b) ao método de linearização por realimentação. Contudo, conforme introduzido nas seções 2.1 e 2.2, essa abordagem apresenta parâmetros de operação passíveis de definição pelo usuário, como por exemplo, a taxa de aprendizagem (α), a taxa doíndice de alerta (β), os limiares de alerta e compatibilidade (τ, λ), a zona de influência da Gaussiana (r), os ganhos K p , Ki f , Ki g de atualização dos consequentes dos modelos locais em (11) e (12).É importante ressaltar que há na literatura (Pedrycz and Gomide, 2007;Lima et al, 2010;Lughofer, 2011) indicações das regiões para busca dos parâmetros do ePL.…”
Section: Formulação Do Problemaunclassified
See 1 more Smart Citation
“…By utilizing steady state of control input, [18] proposes a robust granular feedback linearization method to achieve asymptotic tracking and disturbance rejection, which requires full-state measurement or tracking differentiator in implementation. Inspired by [18] and the idea of invariant manifold in output regulation [19], this paper aims to address the aforementioned problems in output-feedback SMC as well as ensuring satisfactory control performance and disturbance rejection ability for systems subject to mismatched disturbances.…”
Section: Introductionmentioning
confidence: 99%
“…By utilizing steady state of control input, [18] proposes a robust granular feedback linearization method to achieve asymptotic tracking and disturbance rejection, which requires full-state measurement or tracking differentiator in implementation. Inspired by [18] and the idea of invariant manifold in output regulation [19], this paper aims to address the aforementioned problems in output-feedback SMC as well as ensuring satisfactory control performance and disturbance rejection ability for systems subject to mismatched disturbances. The main contributions of this paper are summarized as follows: 1) the transformation based on the invariant manifold reduces the burden on the observer, which admits lower observer poles to achieve satisfactory performance, thus largely attenuates measurement noises; 2) the chattering problem in SMC can be attenuated to a large extent since the switching gain changes with the estimation error adaptively; 3) the proposed approach can effectively compensate the influence caused by unknown time-derivatives of the reference signal without any tracking differentiator, which leads to a more concise control structure and simple implementation.…”
Section: Introductionmentioning
confidence: 99%