The reinforcement learning problem of complex action control in a multi-player wargame has been a hot research topic in recent years. In this paper, a game system based on turn-based confrontation is designed and implemented with state-of-the-art deep reinforcement learning models. Specifically, we first design a Q-learning algorithm to achieve intelligent decision-making, which is based on the DQN (Deep Q Network) to model complex game behaviors. Then, an a priori knowledge-based algorithm PK-DQN (Prior Knowledge-Deep Q Network) is introduced to improve the DQN algorithm, which accelerates the convergence speed and stability of the algorithm. The experiments demonstrate the correctness of the PK-DQN algorithm, it is validated, and its performance surpasses the conventional DQN algorithm. Furthermore, the PK-DQN algorithm shows effectiveness in defeating the high level of rule-based opponents, which provides promising results for the exploration of the field of smart chess and intelligent game deduction.