Dynamic Principal Components Analysis (DPCA) is an extension of Principal Components Analysis (PCA), developed in order to add the ability to capture the autocorrelative behaviour of processes, to the existent and well known PCA capability for modelling cross-correlation between variables. The simultaneous modelling of the dependencies along the "variable" and "time" modes, allows for a more compact and rigorous description of the normal behaviour of processes, laying the ground for the development of, for instance, improved Statistical Process Monitoring (SPM) methodologies, able to robustly detect finer deviations from normal operation conditions. A key point in the application of DPCA is the definition of its structure, namely the selection of the number of time-shifted replicates for each variable to include, and the number of components to retain in the final model. In order to address the first of these two fundamental design aspects of DPCA, and arguably the most complex one, we propose two new lag selection methods.The first method estimates a single lag structure for all variables, whereas the second one refines this procedure, providing the specific number of lags to be used for each individual variable. The application of these two proposed methodologies to several case studies led to a more rigorous estimation of the number of lags really involved in the dynamical mechanisms of the processes under analysis. This feature can be explored for implementing improved system identification, process monitoring and process control tasks that rely upon a DPCA modelling framework.