Achievement of complete resections is of utmost importance in brain tumor surgery, due to the established correlation among extent of resection and postoperative survival. Various tools have recently been included in current clinical practice aiming to more complete resections, such as neuronavigation and fluorescent-aided techniques, histopathological analysis still remains the gold-standard for diagnosis, with frozen section as the most used, rapid and precise intraoperative histopathological method that permits an intraoperative differential diagnosis. Unfortunately, due to the various limitations linked to this technique, it is still unsatisfactorily for obtaining real-time intraoperative diagnosis. Confocal laser technology has been recently suggested as a promising method to obtain near real-time intraoperative histological data in neurosurgery, due to its established use in other non-neurosurgical fields. Still far to be widely implemented in current neurosurgical clinical practice, this technology was initially studied in preclinical experiences confirming its utility in identifying brain tumors, microvasculature and tumor margins. Hence, ex vivo and in vivo clinical studies evaluated the possibility with this technology of identifying and classifying brain neoplasms, discerning between normal and pathologic tissue, showing very promising results. This systematic review has the main objective of presenting a state-of-the-art summary on actual clinical applications of confocal laser imaging in neurosurgical practice.