2007
DOI: 10.1007/s00453-007-9149-8
|View full text |Cite
|
Sign up to set email alerts
|

Exact Algorithms for Exact Satisfiability and Number of Perfect Matchings

Abstract: We present exact algorithms with exponential running times for variants of n-element set cover problems, based on divide-and-conquer and on inclusionexclusion characterizations.We show that the Exact Satisfiability problem of size l with m clauses can be solved in time 2 m l O(1) and polynomial space. The same bounds hold for counting the number of solutions. As a special case, we can count the number of perfect matchings in an n-vertex graph in time 2 n n O(1) and polynomial space. We also show how to count t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
31
0
1

Year Published

2007
2007
2020
2020

Publication Types

Select...
5
3

Relationship

1
7

Authors

Journals

citations
Cited by 52 publications
(32 citation statements)
references
References 38 publications
0
31
0
1
Order By: Relevance
“…The usual trick is to apply divide and conquer paradigm to reduce the space requirement. It has been used in [11,1] for other problems.…”
Section: Theorem 4 Letmentioning
confidence: 99%
See 2 more Smart Citations
“…The usual trick is to apply divide and conquer paradigm to reduce the space requirement. It has been used in [11,1] for other problems.…”
Section: Theorem 4 Letmentioning
confidence: 99%
“…For decision problems with input size n, and a parameter k (which typically, and in all the problems we consider in this paper, is the solution size), the goal in parameterized algorithms is to design an exact algorithm with runtime f (k)n O (1) where f is a function of k alone, against a trivial n k+O (1) algorithm. Problems having such an algorithm is said to be fixed parameter tractable (FPT), and such algorithms are practical when small parameters cover practical ranges.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Such algorithms are also known for general graphs [BH08], the current best bound is O(1.619 n ) [Koi09].…”
Section: Consequencesmentioning
confidence: 99%
“…В них для решения ЗК предложен алгоритм динамического программирования, имею-щий временную сложность O(2 n ) и использующий память M (M -максимальный вес ребра). Лучший алгоритм с полиномиальной памятью с временной сложностью O(4 n n log n ) получен в работах [9,10]. В ра-боте [11] показано, что ЗК может быть решена за время O(2 2n-t n log(n-t) ) и памятью О(2 t ) для любого t=n, n/2, n/4, … В работах [12][13][14][15] …”
Section: метод решения проблемыunclassified