2010
DOI: 10.1007/s11009-010-9189-4
|View full text |Cite
|
Sign up to set email alerts
|

Exact Bayesian Prediction in a Class of Markov-switching Models

Abstract: Jump-Markov state-space systems (JMSS) are widely used in statistical signal processing. However as is well known Bayesian restoration in JMSS is an NP-hard problem, so in practice all inference algorithms need to resort to some approximations. In this paper we focus on the computation of the conditional expectation of the hidden variable of interest given the available observations, which is optimal from the Bayesian quadratic risk viewpoint. We show that in some stochastic systems, namely the Partially Pairw… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2013
2013
2020
2020

Publication Types

Select...
3
1
1

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(3 citation statements)
references
References 16 publications
0
2
0
1
Order By: Relevance
“…This setting arises as a special case of our framework. Extensions of filtering on Triplet Markov Trees and pairwise Markov trees are dealt with in Bardel and Desbouvries (2012) and Desbouvries et al (2006) respectively.…”
Section: Related Workmentioning
confidence: 99%
“…This setting arises as a special case of our framework. Extensions of filtering on Triplet Markov Trees and pairwise Markov trees are dealt with in Bardel and Desbouvries (2012) and Desbouvries et al (2006) respectively.…”
Section: Related Workmentioning
confidence: 99%
“…Les perspectives pour ce travail contiennent les différentes extensions en complexifiant la loi de ) , , ( Y R U ; en particulier, on peut considérer des processus « partiellement » de Markov, autorisant des bruitages à mémoire longue (Lanchantin et al, 2008 ;Pieczynski, 2013a). On pourra alors envisager d'utiliser ces différents modèles à des fins de lissage ou prédictions, en étendant ainsi les premiers résultats obtenus dans le cadre des ) , , ( Y R X T = dans F , présentés dans (Bardel et Desbouvries, 2012 ;Pieczynski, 2011b). L'estimation des paramètres, en s'inspirant éventuellement de (Fox et al, 2011), constitue une autre perspective intéressante.…”
Section: Filtrage Optimal Avec Sauts 359unclassified
“…In addition, different uses of U can be dealt with simultaneously as, for example, in the case of nonstationary hidden semi-Markov model [26]. TMCs have also been used for continuous hidden sequences in Kalman filtering [30], in prediction [31], or still optimal fast filtering in a particular class of switching systems [32]. Finally, let us mention that hidden Markov fields have also been extended to triplet Markov fields [33], and have been successfully applied to complex structure data classification [34], in SAR images processing [35], [36], [37], [38] or biometry [39].…”
Section: Introductionmentioning
confidence: 99%