We present the Seven Dwarfs of Symbolic Computation, which are sequential and parallel algorithmic methods that today carry a great majority of all exact and hybrid symbolic compute cycles. SymDwf 1. Exact linear algebra, integer lattices SymDwf 2. Exact polynomial and differential algebra, Gröbner bases SymDwf 3. Inverse symbolic problems, e.g., interpolation and parameterization SymDwf 4. Tarski's algebraic theory of real geometry SymDwf 5. Hybrid symbolic-numeric computation SymDwf 6. Computation of closed form solutions SymDwf 7. Rewrite rule systems and computational group theory We will elaborate on each dwarf and compare with Colella's seven and the Berkeley team's thirteen dwarfs of scientific computing.