2021
DOI: 10.1049/mia2.12107
|View full text |Cite
|
Sign up to set email alerts
|

Exact conic section arc elements in 2D and 2.5D FEM using a coordinate transformation

Abstract: This study introduces the conic section arc elements in 2D and 2.5D finite element method (FEM ). Elements are obtained by deforming an edge in a standard triangular element through a coordinate transformation. This allows to completely eliminate the geometrical error in structures composed of circular, elliptical, hyperbolic and parabolic arcs. The element order is defined independently of the geometrical description of the boundary, allowing the use of simple meshers. Previously available FEM codes can be st… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
7
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
2

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(7 citation statements)
references
References 23 publications
0
7
0
Order By: Relevance
“…Figure 3 compares the eigenvalues for a waveguide with R=10mm <math altimg="urn:x-wiley:08952477:media:mop33493:mop33493-math-0110" wiley:location="equation/mop33493-math-0110.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>R</mi><mo>\unicode{x0003D}</mo><mn>10</mn><mtext>mm</mtext></mrow></mrow></math>, rb=1mm <math wiley:location="equation/mop33493-math-0259.png" altimg="urn:x-wiley:08952477:media:mop33493:mop33493-math-0259" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>r</mi><mi>b</mi></msub><mo>\unicode{x0003D}</mo><mn>1</mn><mtext>mm</mtext></mrow></mrow></math> and varying dR <math altimg="urn:x-wiley:08952477:media:mop33493:mop33493-math-0111" wiley:location="equation/mop33493-math-0111.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>d</mi><mo>\unicode{x02215}</mo><mi>R</mi></mrow></mrow></math> (from 0 <math wiley:location="equation/mop33493-math-0271.png" altimg="urn:x-wiley:08952477:media:mop33493:mop33493-math-0271" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>0</mn></mrow></mrow></math>, circular waveguide, to 1.5 <math wiley:location="equation/mop33493-math-0272.png" altimg="urn:x-wiley:08952477:media:mop33493:mop33493-math-0272" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>1.5</mn></mrow></mrow></math>). TE and TM modes are computed with M=N=20 <math altimg="urn:x-wiley:08952477:media:mop33493:mop33493-math-0112" wiley:location="equation/mop33493-math-0112.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>M</mi><mo>\unicode{x0003D}</mo><mi>N</mi><mo>\unicode{x0003D}</mo><mn>20</mn></mrow></mrow></math> and compared with a two‐dimensional FEM solution 12 . Good agreement is apparent, even for geometries rather different from a circumference (dR=1.5 <math altimg="urn:x-wiley:08952477:media:mop33493:mop33493-math-0113" wiley:location="equation/mop33493-math-0113.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>d</mi><mo>\unicode{x02215}</mo><mi>R</mi><mo>\unicode{x0003D}</mo><mn>1.5</mn></mrow></mrow></math>).…”
Section: Numerical Resultsmentioning
confidence: 99%
See 4 more Smart Citations
“…Figure 3 compares the eigenvalues for a waveguide with R=10mm <math altimg="urn:x-wiley:08952477:media:mop33493:mop33493-math-0110" wiley:location="equation/mop33493-math-0110.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>R</mi><mo>\unicode{x0003D}</mo><mn>10</mn><mtext>mm</mtext></mrow></mrow></math>, rb=1mm <math wiley:location="equation/mop33493-math-0259.png" altimg="urn:x-wiley:08952477:media:mop33493:mop33493-math-0259" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>r</mi><mi>b</mi></msub><mo>\unicode{x0003D}</mo><mn>1</mn><mtext>mm</mtext></mrow></mrow></math> and varying dR <math altimg="urn:x-wiley:08952477:media:mop33493:mop33493-math-0111" wiley:location="equation/mop33493-math-0111.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>d</mi><mo>\unicode{x02215}</mo><mi>R</mi></mrow></mrow></math> (from 0 <math wiley:location="equation/mop33493-math-0271.png" altimg="urn:x-wiley:08952477:media:mop33493:mop33493-math-0271" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>0</mn></mrow></mrow></math>, circular waveguide, to 1.5 <math wiley:location="equation/mop33493-math-0272.png" altimg="urn:x-wiley:08952477:media:mop33493:mop33493-math-0272" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>1.5</mn></mrow></mrow></math>). TE and TM modes are computed with M=N=20 <math altimg="urn:x-wiley:08952477:media:mop33493:mop33493-math-0112" wiley:location="equation/mop33493-math-0112.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>M</mi><mo>\unicode{x0003D}</mo><mi>N</mi><mo>\unicode{x0003D}</mo><mn>20</mn></mrow></mrow></math> and compared with a two‐dimensional FEM solution 12 . Good agreement is apparent, even for geometries rather different from a circumference (dR=1.5 <math altimg="urn:x-wiley:08952477:media:mop33493:mop33493-math-0113" wiley:location="equation/mop33493-math-0113.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>d</mi><mo>\unicode{x02215}</mo><mi>R</mi><mo>\unicode{x0003D}</mo><mn>1.5</mn></mrow></mrow></math>).…”
Section: Numerical Resultsmentioning
confidence: 99%
“…hence involving in the TD, not only the radial but also the azimuthal derivative. While (12) reduces to the usual formula…”
Section: Boundary Conditionsmentioning
confidence: 99%
See 3 more Smart Citations