Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
A major problem in computational learning theory is whether the class of formulas in conjunctive normal form (CNF) is efficiently learnable. Although it is known that this class cannot be polynomially learned using either membership or equivalence queries alone, it is open whether the CNF class can be polynomially learned using both types of queries. One of the most important results concerning a restriction of the CNF class is that propositional Horn formulas are polynomial time learnable in Angluin’s exact learning model with membership and equivalence queries. In this work, we push this boundary and show that the class of multivalued dependency formulas (MVDF), which non-trivially extends propositional Horn, is polynomially learnable from interpretations. We then provide a notion of reduction between learning problems in Angluin’s model, showing that a transformation of the algorithm suffices to efficiently learn multivalued database dependencies from data relations. We also show via reductions that our main result extends well known previous results and allows us to find alternative solutions for them.
A major problem in computational learning theory is whether the class of formulas in conjunctive normal form (CNF) is efficiently learnable. Although it is known that this class cannot be polynomially learned using either membership or equivalence queries alone, it is open whether the CNF class can be polynomially learned using both types of queries. One of the most important results concerning a restriction of the CNF class is that propositional Horn formulas are polynomial time learnable in Angluin’s exact learning model with membership and equivalence queries. In this work, we push this boundary and show that the class of multivalued dependency formulas (MVDF), which non-trivially extends propositional Horn, is polynomially learnable from interpretations. We then provide a notion of reduction between learning problems in Angluin’s model, showing that a transformation of the algorithm suffices to efficiently learn multivalued database dependencies from data relations. We also show via reductions that our main result extends well known previous results and allows us to find alternative solutions for them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.