Rapid resolution liquid chromatography (RRLC) coupled with diode array detection (DAD) and electrospray ionization time-of-flight mass spectrometry (ESI-TOF MS) method was applied to the mass spectral study of a series of naturally occurring iridoid glycosides and phenylpropanoid glycosides in Radix Scrophulariae, which provides higher speed and increased sensitivity without loss of resolution. With dynamic adjustment as the key role of the fragmentor voltage and confirmed with authentic standards, valuable structural information regarding the nature of both the glycoside skeletons was thus obtained. Most compositions were found to possess organic acid moiety such as cinnamoyl, caffeoyl and ferulyol. Besides extensive fragmentation of the carbohydrate moiety, losses of the hydroxyl and glucose residue units showed in the spectra, permitting the exploration of the skeleton and the identity of substituents in the molecule. Ten major iridoid glycosides and 10 phenylpropanoid glycosides were identified or tentatively characterized based on their retention times, UV and TOF MS data. The major fragmentation pathways of PGs in Radix Scrophulariae obtained through the MS data was schemed systematically for the first time, which provides a reference for other PGs derivatives.