We derive universal entanglement entropy and Schmidt eigenvalue behaviors for the eigenstates of two quantum chaotic systems coupled with a weak interaction. The progression from a lack of entanglement in the noninteracting limit to the entanglement expected of fully randomized states in the opposite limit is governed by the single scaling transition parameter, Λ. The behaviors apply equally well to few-and many-body systems, e.g. interacting particles in quantum dots, spin chains, coupled quantum maps, and Floquet systems as long as their subsystems are quantum chaotic, and not localized in some manner. To calculate the generalized moments of the Schmidt eigenvalues in the perturbative regime, a regularized theory is applied, whose leading order behaviors depend on √ Λ. The marginal case of the 1/2 moment, which is related to the distance to closest maximally entangled state, is an exception having a √ Λ ln Λ leading order and a logarithmic dependence on subsystem size. A recursive embedding of the regularized perturbation theory gives a simple exponential behavior for the von Neumann entropy and the Havrda-Charvát-Tsallis entropies for increasing interaction strength, demonstrating a universal transition to nearly maximal entanglement. Moreover, the full probability densities of the Schmidt eigenvalues, i.e. the entanglement spectrum, show a transition from power laws and Lévy distribution in the weakly interacting regime to random matrix results for the strongly interacting regime. The predicted behaviors are tested on a pair of weakly interacting kicked rotors, which follow the universal behaviors extremely well.