1988
DOI: 10.1016/0022-1694(88)90123-0
|View full text |Cite
|
Sign up to set email alerts
|

Exact nonlinear solution for constant flux infiltration

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
52
0
5

Year Published

1991
1991
2017
2017

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 99 publications
(58 citation statements)
references
References 4 publications
1
52
0
5
Order By: Relevance
“…The infiltration function in equation (24) was verified recently by Triadis and Broadbridge [2010]. Their solution relies on the nonlinear models of Broadbridge and White [1988] and Sander et al [1988a] and was validated numerically by Broadbridge et al [2009].…”
Section: Integral Approachmentioning
confidence: 88%
See 1 more Smart Citation
“…The infiltration function in equation (24) was verified recently by Triadis and Broadbridge [2010]. Their solution relies on the nonlinear models of Broadbridge and White [1988] and Sander et al [1988a] and was validated numerically by Broadbridge et al [2009].…”
Section: Integral Approachmentioning
confidence: 88%
“…Solving the problem of two-phase flow in porous medium presented an increased interest since oil can replace air in the two-phase definition and thus address practical issues related to the oil industry. Different approaches were developed [Youngs and Peck, 1964;McWhorter, 1971;MorelSeytoux, 1973;Wooding and Morel-Seytoux, 1976;Sander and Parlange, 1984;Sander et al, 1988aSander et al, , 1988bSander et al, , 1988cWeir and Kissling, 1992;Celia and Binning, 1992;Sander et al, 1993;Weeks et al, 2003]. Following McWhorter [1971], the basic equation describing the flux of water, f w , affected by the flux of air, f a , that was solved by Sander et al [1988cSander et al [ , 1993 is…”
Section: Two-phase Flow In Porous Mediamentioning
confidence: 99%
“…Relación Referencias 1 θ(Ψ m ) Brooks y Corey (1964), Brutsaert (1966), Van Genuchten (1980 2 K(θ) Brooks y Corey (1964), Van Genuchten (1980, Sander et al (1988) 3 K(Ψ m ) Gardner (1958), Ritjema (1965), Ahuja y Williams (1991) 4 D(θ) Fujita (1952) -en Fuentes et al, 1992-, Gardner y Mayhugh (1958 La variabilidad espacial puede ser caracterizada, para una superficie ocupada por un tipo único de suelo, con algunas funciones de distribución que afectan a un factor de escala, como sugirieron Warrick et al (1977) al reducir numerosas observaciones en un suelo aluvial a un patrón que ellos estimaron el valor medio, con la que se relacionaban haciendo variar el parámetro de escala. Sus ajustes garantizaban la eficacia del método si bien, como Warrick (1990) reconocía más tarde, presentaba algún problema como las diferencias entre los valores de tal parámetro calculado en base a la componente matricial del potencial o en base a la conductividad hidráulica para valores de la humedad determinados.…”
Section: Tipounclassified
“…Because of strong nonlinearity of the equation, analytical solutions are merely available for very special cases (e.g. [1][2][3][4][5]); hence, numerical approaches are preferable.…”
Section: Introductionmentioning
confidence: 99%