This paper presents some new and valuable numerical results for the thermo-mechanical buckling analysis of bidirectional porous functionally graded plates with uniform and non-uniform temperature rise. The strong form formulation is implemented for thermo-mechanical buckling in the framework of higher-order shear deformation theory. The material property with four schemes of porosity distribution of bidirectional porous functionally graded plate is taken by a modified power law. The governing differential equations are accomplished utilizing the principle of virtual works. The multi-quadric radial basis function is implemented for discretizing the governing differential equations. The multi-quadric radial basis function Euclidean norm is modified to analyze the square as well as rectangular plates without changing the shape parameters. Convergence and validation studies are performed to show the accuracy, effectiveness, and consistency of the present meshfree collocation method. The influence of different porosity distributions, span to thickness ratios, aspect ratios, grading index, temperature raise, boundary conditions, and porosity index on thermomechanical buckling load is evaluated. Some novel results for the bidirectional porous functionally graded plate are also enumerated that can be utilized as benchmark results for future reference.