The presented research investigates the (2+1)-dimensional perturbed nonlinear Schrödinger model. This model takes into account various effects such as fourth order dispersion, intermodal dispersion, nonlinear dispersion, group velocity dispersion, Kerr nonlinearity and self steepening effects. This model simulates the estimation of optical solitons and a variety of broadcasting networks’ transmission in nonlinear fiber optics. The proposed model is studied using the improved modified extended tanh function technique. For the proposed model, several solitons and other solutions are generated. These solutions including {bright, dark and singular} solitons, singular periodic and Jacobi elliptic solutions. By introducing the two- and three-dimensional graphs, the physical behavior of the retrieved solutions is displayed.