2022
DOI: 10.1051/ps/2021018
|View full text |Cite
|
Sign up to set email alerts
|

Exact tail asymptotics for a three-dimensional Brownian-driven tandem queue with intermediate inputs

Abstract: In this paper, we consider a three-dimensional Brownian-driven tandem queue with intermediate inputs, which corresponds to a three-dimensional semimartingale reflecting Brownian motion whose reflection matrix is triangular. For this three-node tandem queue, no closed form formula is known, not only for its stationary distribution but also for the corresponding transform. We are interested in exact tail asymptotics for stationary distributions. By generalizing the kernel method, and using extreme value theory a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
6
0

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(6 citation statements)
references
References 35 publications
0
6
0
Order By: Relevance
“…We can then establish the fundamental form for the model: −H(x, y, z)φ(x, y, z) = H 1 (x, y)φ 1 (x, y, z) + H 2 (y, z)φ 2 (x, y, z) + H 3 (z)φ 3 (x, y, z), where φ(x, y, z) = E e xL 1 +yL 2 +zL 3 , φ i (x, y, z) = For this specific model, the analytic continuation of the unknown functions φ i , i = 1, 2, 3, and their asymptotic property at the dominant singularity were obtained in [10] based on relationships (or interplay) of the unknown functions. The key idea for the continuation is equivalent to a dimension reduction procedure.…”
Section: Higher-dimensional Problemsmentioning
confidence: 95%
See 4 more Smart Citations
“…We can then establish the fundamental form for the model: −H(x, y, z)φ(x, y, z) = H 1 (x, y)φ 1 (x, y, z) + H 2 (y, z)φ 2 (x, y, z) + H 3 (z)φ 3 (x, y, z), where φ(x, y, z) = E e xL 1 +yL 2 +zL 3 , φ i (x, y, z) = For this specific model, the analytic continuation of the unknown functions φ i , i = 1, 2, 3, and their asymptotic property at the dominant singularity were obtained in [10] based on relationships (or interplay) of the unknown functions. The key idea for the continuation is equivalent to a dimension reduction procedure.…”
Section: Higher-dimensional Problemsmentioning
confidence: 95%
“…One of such moelds was considered in Dai, Dawson and Zhao [10], which is a three-dimensional Brownian-driven tandem queue with intermediate inputs. The buffer content L i (t) at node i at time t ≥ 0, for i = 1, 2, 3, is described by…”
Section: Higher-dimensional Problemsmentioning
confidence: 99%
See 3 more Smart Citations