Locally variational systems of differential equations on smooth manifolds, having certain de Rham cohomology group trivial, automatically possess a global Lagrangian. This important result due to Takens is, however, of sheaf-theoretic nature. A new constructive method of finding a global Lagrangian for second-order ODEs on 2-manifolds is described on the basis of solvability of exactness equation for Lepage 2-forms, and the top-cohomology theorems. Examples from geometry and mechanics are discussed.