Erwinia pyrifoliae, a causal agent of black shoot blight in apple and pear trees, is a plant pathogenic bacterium first reported in South Korea. The symptoms of black shoot blight are very similar to the fire blight disease in apple and pear trees caused by Erwinia amylovora, as E. pyrifoliae has a genetically very close relationship with E. amylovora. Recently, there have been reports that E. pyrifoliae causes disease in European strawberries, resulting in severe fruit loss that aroused great concern about its spread, distribution, and host range. Therefore, it is essential to establish a trustworthy approach to understanding the distribution patterns of E. pyrifoliae based on the genetic background to strengthen the barrier of potential spreading risks, although advanced methods have been provided to accurately detect E. pyrifoliae and E. amylovora. Consequently, this study discovered a noble and noteworthy gene, rsxC, capable of providing the pathogen genotype by comparing E. pyrifoliae genomic sequences in the international representative genome archive. Different numbers of 40-unit amino acid repeats in this gene among the strains induced intraspecific traits in RsxC. By comparing their repeat pattern, E. pyrifoliae isolates were divided into two main groups, branching into several clades via its sequence alignment of 35 isolates from various apple orchards from 2020 to 2021 in South Korea. The newly discovered quadraginta amino acid repeat within this gene would be a valuable genetic touchstone for determining the genotype and distribution pattern of E. pyrifoliae strains, ultimately leading to exploring their evolution. The function of amino acid repeats and the biological significance of strains need to be elucidated further.