2021
DOI: 10.30880/jscdm.2021.02.02.006
|View full text |Cite
|
Sign up to set email alerts
|

Examining Swarm Intelligence-based Feature Selection for Multi-Label Classification

Abstract: Multi-label classification addresses the issues that more than one class label assigns to each instance. Many real-world multi-label classification tasks are high-dimensional due to digital technologies, leading to reduced performance of traditional multi-label classifiers. Feature selection is a common and successful approach to tackling this problem by retaining relevant features and eliminating redundant ones to reduce dimensionality. There is several feature selection that is successfully applied in multi-… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 49 publications
0
0
0
Order By: Relevance