Political polarization has become an alarming trend observed in various countries. In the effort to produce more consistent simulations of the process, insights from the foundations of physics are adopted. The work presented here looks at a simple model of political polarization amongst agents which influence their immediate locality and how a entropy trace of the political discourse can be produced. From this model an isolated system representation can be formulated in respect to the changes in the entropy values across all variables of the system over simulation time. It is shown that a constant entropy value for the system can be calculated so that as the agents coalesce their opinions, the entropy trace in regards to political engagements decreases as the entropy value across non-political engagements increase. This relies upon an intrinsic constraint upon agents imposing a fixed number of activities per time point. As a result the simulation respects the second law of thermodynamics and provides insight into political polarization as a basin of entropy within an isolated system without making assumptions about external activities.