We equate various Euler classes of algebraic vector bundles, including those of [BM00],[KW17], [DJK18], and one suggested by M.J. Hopkins, A. Raksit, and J.-P. Serre. We establish integrality results for this Euler class, and give formulas for local indices at isolated zeros, both in terms of 6-functor formalism of coherent sheaves and as an explicit recipe in commutative algebra of Scheja and Storch. As an application, we compute the Euler classes associated to arithmetic counts of d-planes on complete intersections in P n in terms of topological Euler numbers over R and C.