Transparent, Sr(Al0.5Nb0.5)O3‐modified K0.5Na0.5NbO3 (KNN) ceramics were successfully fabricated by a solid‐state pressureless sintering method in this work. The obtained microstructure, transmittance, and electrical properties were characterized in detail. Our results indicated that the modification by Sr(Al0.5Nb0.5)O3 significantly limited the grain growth behavior of KNN, resulting in dense ceramics with submicron grain size (<0.5 μm) and small pore size. Consequently, the ceramic with the 0.96K0.5Na0.5NbO3‐0.04Sr(Al0.5Nb0.5)O3 composition showed superior transmittance and electrical properties: T = 55% in the visible region (0.78 μm), d33 = 105 pC/N, εr = 1021, and Pr = 15.1 μC/cm2, which were significantly higher than those of pure KNN. Our findings implied that the addition of Sr(Al0.5Nb0.5)O3 could be a good strategy to obtain superior transmittance and electrical properties in KNN and may shed light on other ferroelectric systems.