Abstract:Excess volumes and excess compressibilities for hard spheres in water were computed by pressure derivatives of the excess chemical potential, which is equivalent to the work of cavity formation. This is relevant to the application of continuum solvation methods at various pressures. The excess chemical potential was modeled within phenomenological expressions for curved surfaces plus a pressure-volume term, for which two approaches were adopted, differing for the radius of the spherical volume. This implies a … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.