Chromatin reorganization plays an important role in DNA repair, apoptosis, and cell cycle checkpoints. Among proteins involved in chromatin reorganization, TIP60 histone acetyltransferase has been shown to play a role in DNA repair and apoptosis. However, how TIP60 regulates chromatin reorganization in the response of human cells to DNA damage is largely unknown. Here, we show that ionizing irradiation induces TIP60 acetylation of histone H2AX, a variant form of H2A known to be phosphorylated following DNA damage. Furthermore, TIP60 regulates the ubiquitination of H2AX via the ubiquitin-conjugating enzyme UBC13, which is induced by DNA damage. This ubiquitination of H2AX requires its prior acetylation. We also demonstrate that acetylation-dependent ubiquitination by the TIP60-UBC13 complex leads to the release of H2AX from damaged chromatin. We conclude that the sequential acetylation and ubiquitination of H2AX by TIP60-UBC13 promote enhanced histone dynamics, which in turn stimulate a DNA damage response.Chromatin reorganization by histone modification and mobilization plays a crucial role in DNA metabolism, including replication, transcription, and repair. It appears that histone modification and mobilization can reorganize chromatin to allow DNA repair machinery to access damaged chromosomal DNA (11,29,52,56,57).H2AX is a histone variant that differs from H2A at various amino acid residues along the entire protein and in its Cterminal extensions. H2AX is phosphorylated after the induction of DNA double-strand breaks (DSBs), and the phosphorylated H2AX (␥-H2AX) participates in focus formation at sites of DNA damage. After induction of DSBs, the MRN complex (MRE11, RAD50, and NBS1) binds to broken DNA ends and recruits active ATM, ATR, and/or DNA protein kinase, resulting in the initial phosphorylation of H2AX (32,38,40). MDC1 then associates with ␥-H2AX and recruits additional activated ATM to the sites of DSBs (23,46). This positive feedback loop leads to the expansion of the ␥-H2AX region surrounding DSBs and provides docking sites for many DNA damage and repair proteins, including the MRN complex, 53BP1, and BRCA1 (5, 6, 46). ␥-H2AX plays a role in the accumulation but not in the initial recruitment of repair factors such as the MRN complex, 53BP1, and BRCA1 (10, 63). Therefore, modifications of H2AX other than phosphorylation could play a role in the initial step of the DNA damage response.Until recently, the biological significance of ubiquitination in the DNA damage response has been unclear. H2B ubiquitination regulates the damage checkpoint response (15). H2A is ubiquitinated during the response to UV-induced DNA damage (8). UV-induced DNA damage also causes the ubiquitination of histones H3 and H4, resulting in their release from chromatin (60). Interestingly, ubiquitin-conjugated proteins appear to be accumulated at sites of DSBs, forming nuclear foci like ␥-H2AX (34). These findings raise the possibility that histone ubiquitination is also involved in the reorganization of chromatin in response to D...