We run an oil prices forecasting competition among a set of structural models, including vector autoregressions and dynamic stochastic general equilibrium models. Our results highlights two principles. First, forecasts should exploit the mean reversion of the real oil price over long horizons. Second, models should not replicate the high volatility of oil prices observed in sample. Abiding by these principles, we show that a small scale DSGE model performs much better in real oil price forecasting than the random walk as well as vector autoregressions.