In recent years, data examples have been at the core of several different approaches to schema-mapping design. In particular, Gottlob and Senellart introduced a framework for schema-mapping discovery from a single data example, in which the derivation of a schema mapping is cast as an optimization problem. Our goal is to refine and study this framework in more depth. Among other results, we design a polynomial-time log(
n
)-approximation algorithm for computing optimal schema mappings from a given set of data examples (where
n
is the combined size of the given data examples) for a restricted class of schema mappings; moreover, we show that this approximation ratio cannot be improved. In addition to the complexity-theoretic results, we implemented the aforementioned log(
n
)-approximation algorithm and carried out an experimental evaluation in a real-world mapping scenario.