The study of surface texturing on a metallic surface has become a great area of interest of researchers in the last few decades. Surface texturing is employed for enhancing the performance of the surface in its working environment. As the characterization techniques have been evolving very fast, researchers have started mimicking the natural surfaces to take the advantages of their characteristics (such as self-cleaning, load capacity, reducing coefficient of friction). Manufacturing of natural inspired surface requires having a great control over the process to achieve the micro or nano features on the natural surfaces. Hence, the selection of the most suitable process and optimum parameters for machining of arrays of micro or nano features at large scale is highly desirable. This study reports an overview of different micromachining processes used for texturing on metallic surfaces and research gaps to be filled in the available literature. Electrochemical micromachining has tremendous potential on account of its versatility in different applications. It is a promising and economically viable machining process for micromanufacturing industries for fabrication of micro textures and micro features on metallic surfaces. Production of textured surface at large scale requires a sustainable technology, which can serve the purpose of enhancing the performance of the surface without changing the original properties of the surface. Indeed, laser surface texturing, through-mask electrochemical micromachining, lithography, micro-or nanocasting and so on are the existing methods which involve multiple steps for generation of textured surfaces. This article also reports some original experimental investigations for generation of different kinds of micro textures on metallic surfaces, namely, arrays of micro dimples, micro channels and micro pillars using a single-step maskless electrochemical micro-texturing process with a pre-patterned micro tool.