The
delocalization of the photoexcited triplet state in a linear
butadiyne-linked porphyrin dimer is investigated by time-resolved
and pulse electron paramagnetic resonance (EPR) with laser excitation.
The transient EPR spectra of the photoexcited triplet states of the
porphyrin monomer and dimer are characterized by significantly different
spin polarizations and an increase of the zero-field splitting parameter D from monomer to dimer. The proton and nitrogen hyperfine
couplings, determined using electron nuclear double resonance (ENDOR)
and X- and Q-band HYSCORE, are reduced to about half in the porphyrin
dimer. These data unequivocally prove the delocalization of the triplet
state over both porphyrin units, in contrast to the conclusions from
previous studies on the triplet states of closely related porphyrin
dimers. The results presented here demonstrate that the most accurate
estimate of the extent of triplet state delocalization can be obtained
from the hyperfine couplings, while interpretation of the zero-field
splitting parameter D can lead to underestimation
of the delocalization length, unless combined with quantum chemical
calculations. Furthermore, orientation-selective ENDOR and HYSCORE
results, in combination with the results of density functional theory
(DFT) calculations, allowed determination of the orientations of the
zero-field splitting tensors with respect to the molecular frame in
both porphyrin monomer and dimer. The results provide evidence for
a reorientation of the zero-field splitting tensor and a change in
the sign of the zero-field splitting D value. The
direction of maximum dipolar coupling shifts from the out-of-plane
direction in the porphyrin monomer to the vector connecting the two
porphyrin units in the dimer. This reorientation, leading to an alignment
of the principal optical transition moment and the axis of maximum
dipolar coupling, is also confirmed by magnetophotoselection experiments.