“…Recent advances in machine learning (ML) and specifically deep learning (DL) ( LeCun et al, 2015 ), have radically improved our capacity to access and extract information from abstract and noisy inputs independently of human interventions as we ( ATLAS collaboration, 2014 ) and others have shown ( Berg et al, 2019 ; Christiansen et al, 2018 ; Falk et al, 2019 ; Gómez-García et al, 2018 ; Jones, 2019 ; Ouyang et al, 2018 ; Smith et al, 2019 ; Zhang et al, 2018 ). DL implementations are providing high-level robust performances and have been successfully used to analyze and augment a wide range of the fluorescence microscopy analysis pipeline including assessing microscope image quality ( Yang et al, 2018 ), in-silico cell labeling ( Christiansen et al, 2018 ), single-cell morphology analysis ( Berg et al, 2019 ; Falk et al, 2019 ), detecting single molecules ( White et al, 2020 ; Wu and Rifkin, 2015 ) and linking smFRET experiments with molecular dynamics simulations ( Matsunaga and Sugita, 2018 ), amongst others ( Berg et al, 2019 ; Christiansen et al, 2018 ; Falk et al, 2019 ; Gómez-García et al, 2018 ; Jones, 2019 ; Ouyang et al, 2018 ; Smith et al, 2019 ; Zhang et al, 2018 ).…”