1967
DOI: 10.1070/pu1967v010n03abeh003250
|View full text |Cite
|
Sign up to set email alerts
|

Excitation of Electrons in Solids by Relatively Slow Atomic Particles

Abstract: We consider a quantum wire double junction system with each wire segment described by a spinless Luttinger model, and study theoretically shot noise in this system in the sequential tunnelling regime. We find that the non-equilibrium plasmonic excitations in the central wire segment give rise to qualitatively different behaviour compared to the case with equilibrium plasmons. In particular, shot noise is greatly enhanced by them, and exceeds the Poisson limit. We show that the enhancement can be explained by t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
12
0
3

Year Published

1971
1971
2024
2024

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 36 publications
(15 citation statements)
references
References 2 publications
0
12
0
3
Order By: Relevance
“…These electrons sustain the discharge by ionization of the neutral gas, and generation of ions which then bombard the cathode releasing more secondary electrons. Ion-and neutral-induced secondary electron emission has been studied both theoretically and experimentally for decades (Abroyan et al, 1967;Hasselkamp, 1992;Parilis and Kishinevskii, 1960).…”
Section: B Secondary Electronsmentioning
confidence: 99%
“…These electrons sustain the discharge by ionization of the neutral gas, and generation of ions which then bombard the cathode releasing more secondary electrons. Ion-and neutral-induced secondary electron emission has been studied both theoretically and experimentally for decades (Abroyan et al, 1967;Hasselkamp, 1992;Parilis and Kishinevskii, 1960).…”
Section: B Secondary Electronsmentioning
confidence: 99%
“…Ion-induced electron emission (IIEE) can be theoretically split into two distinct processes [47,48]: (i) kinetic electron emission quantified by a yield γ k , which is the ionic counterpart of secondary electron emission, where the energy required for the bound electron excitation is provided by the kinetic energy of the impinging ions; (ii) potential electron emission quantified by a yield γ p , where the energy required for the bound electron excitation is provided by the potential energy released during the neutralization of the impinging ions. There is an incident energy threshold E th inc below which kinetic electron emission cannot occur.…”
Section: Updates Of Plasma-surface Interactionsmentioning
confidence: 99%
“…Toutefois, l'utilisation de cibles solides et l'observation' d'électrons introduisent quelques différences. Tout d'abord, avant qu'il atteigne la cible, l'ion A+ est généralement neutralisé par transition résonnante ou par neutralisation Auger [17], car la vitesse de l'ion incident A+ est suffisamment faible pour permettre à un électron de conduction du métal cible de passer sur un niveau électronique inoccupé de l'ion incident, avec éventuellement émission potentielle d'électrons secondaires [18,19]. C'est donc un atome d'argon neutre qui atteint la cible.…”
Section: Introduction -En 1965 Fano Etunclassified
“…D'une part, la forme du spectre Auger de l'argon ne dépend pas de l'angle d'émission des électrons ; d'autre part, l'intensité de l'émission varie avec l'angle d'émission selon une loi en cosinus ( Fig. 2), identique à celle obtenue lors du bombardement de métaux polycristallins pour l'émission des électrons secondaires [19,35] et pour l'émission Auger des atomes du métal [7]. La majeure partie des désexcitations Auger observées ont donc lieu à l'intérieur du métal, et les désexcitations externes, qui conduiraient à une émission Auger isotrope, ne peuvent jouer qu'un rôle négligeable.…”
Section: Introduction -En 1965 Fano Etunclassified