We present an implementation
of the Frenkel exciton model in the
framework of the semiempirical floating occupation molecular orbitals-configuration
interaction (FOMO-CI) electronic structure method, aimed at simulating
the dynamics of multichromophoric systems, in which excitation energy
transfer can occur, by a very efficient approach. The nonadiabatic
molecular dynamics is here dealt with by the surface hopping method,
but the implementation we proposed is compatible with other dynamical
approaches. The exciton coupling is computed either exactly, within
the semiempirical approximation considered, or by resorting to transition
atomic charges. The validation of our implementation is carried out
on the
trans
-azobenzeno-2S-phane (2S-TTABP), formed
by two azobenzene units held together by sulfur bridges, taken as
a minimal model of multichromophoric systems, in which both strong
and weak exciton couplings are present.