The ultraviolet (UV) photodissociation dynamics of the 1methylallyl (1-MA) radical were studied using the high-n Rydberg atom time-offlight (HRTOF) technique in the wavelength region of 226−244 nm. The 1-MA radicals were produced by 193 nm photodissociation of the 3-chloro-1-butene and 1-chloro-2-butene precursor. The 1 + 1 REMPI spectrum of 1-MA agrees with the previous UV absorption spectrum in this wavelength region. Quantum chemistry calculations show that the UV absorption is mainly attributed to the 3p z Rydberg state (perpendicular to the allyl plane). The H atom photofragment yield (PFY) spectrum of 1-MA from 3-chloro-1-butene displays a broad peak around 230 nm, while that from 1-chloro-2-butene peaks at ∼236 nm. The translational energy distributions of the H atom loss product channel, P (E T )'s, show a bimodal distribution indicating two dissociation pathways in 1-MA. The major pathway is isotropic in product angular distribution with β ∼ 0 and has a low fraction of average translational energy in the total excess energy, ⟨f T ⟩, in the range of 0.13−0.17; this pathway corresponds to unimolecular dissociation of 1-MA after internal conversion to form 1,3-butadiene + H. The minor pathway is anisotropic with β ∼ −0.23 and has a large ⟨f T ⟩ of ∼0.62−0.72. This fast pathway suggests a direct dissociation of the methyl H atom on a repulsive excited state surface or the repulsive part of the ground state surface to form 1,3-butadiene + H. The fast/slow pathway branching ratio is in the range of 0.03−0.08.