Time-resolved and magneto-photoluminescence (PL) studies are performed for the so-called I(6)(B) and I(7)(B) excitonic transitions, previously attributed to neutral donor bound excitons involving a hole from the B valence band (VB), D(0)X(B). It is shown that PL decays of these emissions at 2 K are faster than that of their I(6) and I(7) counterparts involving an A VB hole, which is interpreted as being due to energy relaxation of the hole assisted by acoustic phonons. From the magneto-PL measurements, values of effective Lande g factors for conduction electrons and B VB holes are determined as g(e) = 1.91, g(h)(parallel to) = 1.79, and g(h)(perpendicular to) = 0, respectively.|