Paraexcitons, the lowest energy exciton states in Cu 2 O, have been considered a good system for realizing exciton Bose-Einstein condensation (BEC). The fact that their BEC has not been attained so far is attributed to a collision-induced loss, whose nature remains unclear. To understand collisional properties of cold paraexcitons governing their BEC, we perform a theoretical analysis of the s-wave paraexciton-paraexciton scattering at low temperatures. We show the two-channel character of the scattering, where incoming paraexcitons are coupled to a biexciton in a closed channel. Being embedded in the paraexciton scattering continuum, the biexciton is a Feshbach resonance giving rise to a paraexciton loss and a diminution of their background scattering length. In strain-induced traps, the biexciton effects generally increase with stress. Thus the scattering length a of trapped paraexcitons decreases monotonically with stress turning its sign as stress goes beyond a critical value. In the stress range with a<0, the paraexciton loss increases with stress, whereas in that with a>0 the loss is almost stress-independent. Importantly, that in the latter case the loss rate can be reduced to such small values that it has no effects on BEC by lowering temperatures to near one Kelvin and below. Our approximate calculations give the critical value of stress in the range just above one kilobar; thus BEC of strain-confined paraexcitons might be attained under low stress at a subkelvin temperature.