Results from Monte Carlo (MC) simulations are reported
for a binary
mixture of particles A and B placed at the nodes of a three-dimensional
cubic Ising lattice, with pairwise nearest neighbor interactions between
species i and j, E
ij
. The local composition is studied
as a function of composition and of the value of the interchange energy
(δ = 2E
AB – E
AA – E
BB). The MC results
are used to assess the accuracy of analytical theories proposed in
the literature as a function of the interchange energy. The local
composition is shown to obey an exact limiting law at high dilution
of one component, thus providing a simple expression for the limiting
activity coefficient. The activity coefficients of the species and
the entropy per particle are computed from the MC data.