We discuss a multiplicative update quadratic programming algorithm with applications to model predictive control for constrained linear systems. The algorithm, named PQP, is very simple to implement and thus verify, does not require projection, offers a linear rate of convergence, and can be completely parallelized. The PQP algorithm is equipped with conditions that guarantee the desired bound on sub-optimality and with an acceleration step based on projection-free line search. We also show how PQP can take advantage of the parametric structure of the MPC problem, thus moving offline several calculations and avoiding large input/output dataflows. The algorithm is evaluated on two benchmark problems, where it is shown to compete with, and possibly outperform, other open source and commercial packages.
IEEE Conference on Decision and Control (CDC)This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved. Abstract-We discuss a multiplicative update quadratic programming algorithm with applications to model predictive control for constrained linear systems. The algorithm, named PQP, is very simple to implement and thus verify, does not require projection, offers a linear rate of convergence, and can be completely parallelized. The PQP algorithm is equipped with conditions that guarantee the desired bound on suboptimality and with an acceleration step based on projection-free line search. We also show how PQP can take advantage of the parametric structure of the MPC problem, thus moving offline several calculations and avoiding large input/output dataflows. The algorithm is evaluated on two benchmark problems, where it is shown to compete with, and possibly outperform, other open source and commercial packages.