The long-term effects of diving on human lung function are controversially discussed. We investigated the lung function of traditional shellfish divers in southern Chile and identified risk factors for reduced lung volumes in divers. In a cross-sectional study, we assessed lung function in traditional shellfish divers and fishermen from two fishing communities. Male divers and fishermen aged 18–60 years were recruited. Participants’ health and diving habits were assessed via standardized questionnaires. Descriptive statistics, chi-squared tests and multiple linear regression models were applied. Through door-to-door sampling, we recruited 112 divers and 63 fishermen (response 67%). Valid spirometries were obtained from 98 divers and 52 fishermen. Divers had higher values of forced vital capacity (FVC, Beta = 0.28, 95% confidence interval (CI): 0.09; 0.47) and forced expiratory volume in 1 s (FEV1, Beta = 0.23, 95%-CI: 0.07; 0.39) compared to fishermen. Among divers, lower values of FVC (Beta = −0.35, 95%–CI: −0.65; −0.05) were found in those with a high diving frequency, while diving depth was associated with higher values of FVC (Beta = 0.28, 95%–CI = 0.04; 0.52). Professional divers had better lung function compared to fishermen. However, among divers, lung function decreased with cumulative diving exposure, warranting approval in future studies to ensure the safety and health of divers.