Imaging inpainting is the process of digitally filling-in missing pixel values in images and requires carefully crafted image analysis tools. In this work, we propose an adaptive image inpainting method based on the weighted mean. The weighted mean is assessed to be better than the median because, for the case of the weighted mean, we can exclude the values of the corrupted pixels from evaluating values to fill those corrupted pixels. In the experiments, we implement the algorithm on an open dataset with various corrupted masks and we also compare the inpainting result by the proposed method to other similar inpainting methods-the harmonic inpainting method and the inpainting by directional median filtersto prove its own effectiveness to restore small, medium as well as fairly large corrupted regions. This comparison will be handled based on two of the most popular image quality assessment error metrics, such as the peak signal to noise ratio, and structural similarity. Further, since the proposed inpainting method is non-iterative, it is suitable for implementations to process big imagery that traditionally require higher computational costs, such as the large, high-resolution images or video sequences. Povzetek: Opisana je novo razvita metoda določanja manjkajočih točk v sliki s pomočjo uteženega povprečja.