Increased levels of oxidative stress and inflammation have been linked to the progression of chronic kidney disease. To reduce oxidative stress and inflammation related to chronic kidney disease, chronic aerobic exercise is often recommended. Data suggests high intensity interval training may be more beneficial than traditional aerobic exercise. However, appraisals of differing modes of exercise, along with explanations of mechanisms responsible for observed effects, are lacking. This study assessed effects of eight weeks of high intensity interval training (85% VO 2 max), versus low intensity exercise (45-50% VO 2 max) and sedentary behaviour, in an animal model of early-stage chronic kidney disease. We examined kidney-specific mRNA expression of genes related to endogenous antioxidant enzyme activity (glutathione peroxidase 1; Gpx1, superoxide dismutase 1; Sod1, and catalase; Cat) and inflammation (kidney injury molecule 1; Kim1 and tumour necrosis factor receptor super family 1b; Tnfrsf1b), as well as plasma F2-isoprostanes, a marker of lipid peroxidation.Compared to sedentary behaviour, high intensity interval training resulted in increased mRNA expression of Sod1 (p=0.01) and Cat (p<0.001). Compared to low intensity exercise, high intensity interval training resulted in increased mRNA expression of Cat (p<0.001) and Tnfrsf1b (p=0.047). In this study, high intensity interval training was superior to sedentary behaviour and low intensity exercise as high intensity interval training beneficially influenced expression of genes related to endogenous antioxidant enzyme activity and inflammation.