Background
In many cardiac diseases, myocardial scar tissue detected by late gadolinium enhancement (LGE) is a risk factor for cardiac arrhythmia and sudden cardiac death. Previous studies in athletes reported an increased risk for cardiac events in this group of ostensibly healthy subjects. However, the currently available longitudinal studies on this topic included fairly old marathon runners with a mean age of 57 ± 6 years or represent a case–control study in athletes with preexisting ventricular arrhythmia. The purpose of this prospective study was to analyze the prognostic relevance of LGE cardiac magnetic resonance (CMR) in middle-aged endurance athletes without known preexisting cardiac disorders.
Methods
Three-hundred and twelve apparently healthy athletes were prospectively enrolled. Inclusion criteria were a training for a minimum of 10 h per week and regularly participation in competitions. LGE CMR was obtained at baseline in all athletes and presence of LGE was classified visually according to established criteria as ischemic LGE, major or minor non-ischemic LGE or absent LGE. Follow-up consisted of a standardized questionnaire and an additional phone call in case of incomplete data. An event was defined as fatal myocardial infarction, ventricular tachycardia, ventricular fibrillation or sudden cardiac death (SCD).
Results
Complete follow-up was available for 293/312 athletes (94%) including 145 triathletes, 74 marathon runners and 74 cyclists after a median of 5.6 [quartiles 4,3, 6,4] years. Median age was 44 [35, 50] years at study enrollment. Spiroergometry did not reveal heart rhythm disturbances or significant ECG changes in the study population. LGE CMR revealed myocardial scar/focal fibrosis in 80 of 293 athletes (27%) including 7 athletes (2%) with ischemic subendocardial LGE of the left ventricle (LV), 16 athletes (6%) with major non-ischemic LGE of the LV and 57 athletes (19%) with minor non-ischemic LGE. During follow-up, two athletes experienced SCD. One marathon runner died during a training run and one cyclist died suddenly at rest. Both athletes had ischemic LGE of the LV. The event rate for SCD was 0.7% in the entire study population and 28% in the 7 athletes with ischemic LGE (p < 0.001 compared to athletes without LGE).
Conclusions
Our findings indicate that athletes with ischemic LGE due to unrecognized myocardial infarction are at increased risk for SCD. Our findings highlight the value of LGE CMR to detect occult ischemic scar in asymptomatic apparently healthy athletes, which is of importance, since current guidelines do not recommend to incorporate routine cardiac imaging in pre-participation screening. Athletes with ischemic myocardial scar should at least consider to refrain from high-level exercise as an individual decision.