Hemoglobin mass (tHb) is a key determinant of maximal oxygen uptake (VO
2
max). We examined whether oxyhemoglobin desaturation (ΔS
a
O
2
) at VO
2
max modifies the relationship between tHb and VO
2
max at moderate altitude (1,625 m). Seventeen female and 16 male competitive, endurance-trained moderate-altitude residents performed two tHb assessments and two graded exercise tests on a cycle ergometer to determine VO
2
max and ΔS
a
O
2
. In males and females respectively, VO
2
max (ml·kg
−1
·min
−1
) ranged from 62.5–83.0 and 44.5–67.3; tHb (g·kg
−1
) ranged from 12.1–17.5 and 9.1–13.0; and S
a
O
2
at VO
2
max (%) ranged from 81.7–94.0 and 85.7–95.0. tHb was related to VO
2
max when expressed in absolute terms and after correcting for body mass (r=0.94 and 0.86, respectively); correcting by ΔS
a
O
2
did not improve these relationships (r=0.93 and 0.83). Additionally, there was a negative relationship between tHb and S
a
O
2
at VO
2
max (r=–0.57). In conclusion, across a range of endurance athletes at moderate altitude, the relationship between tHb and VO
2
max was found to be similar to that observed at sea level. However, correcting tHb by ΔS
a
O
2
did not explain additional variability in VO
2
max despite significant variability in ΔS
a
O
2
; this raises the possibility that tHb and exercise-induced ΔS
a
O
2
are not independent in endurance athletes.