Despite the extensive therapeutic uses of diclofenac, it may cause several adverse effects, including hepatorenal injury. The antioxidant and anti-inflammatory properties of resveratrol, a polyphenolic compound, make the agent effective in ameliorating a variety of drug-induced injuries. This study investigated the potential beneficial effects of resveratrol on diclofenac-induced hepatorenal toxicity and explored the role of miR-144 and its relationship to oxidative stress and inflammation triggered by diclofenac. Rats were divided into four groups: control; diclofenac group received diclofenac (10 mg/kg/day, intraperitoneal [ip]) for 7 days; prevention group received resveratrol concomitantly with diclofenac for 7 days; and the treatment group received diclofenac for 7 days followed by resveratrol (20 mg/kg/day, per oral) for another 7 days. Diclofenac administration induced a significant increase in serum hepatorenal biomarkers and histopathological aberrations. In addition, diclofenac upregulated miR-144 while reducing nuclear factor erythroid 2-related factor 2 (Nrf2) protein levels and glutathione (GSH) content.Moreover, diclofenac induced tissue inflammation and apoptosis as evidenced by increased protein expression of nuclear factor kappa B (NF-κB), tumor necrosis factor α (TNF-α), and caspase-3. Intriguingly, resveratrol prevention or treatment significantly mitigated the toxic effects of diclofenac as manifested by normalization of the hepatorenal functions and amelioration of the histopathological changes.Resveratrol also triggered miR-144 downregulation with Nrf2 upregulation.Consequently, resveratrol showed hepatorenal antioxidant, anti-inflammatory, and antiapoptotic activities as manifested by improvement in the antioxidant markers along with a decline in NF-κB, TNF-α, and caspase-3 expressions. In conclusion, this study demonstrates a potential therapeutic role of resveratrol in mitigating diclofenac-induced hepatorenal insult, possibly via modulating miR-144/Nrf2/ GSH axis.