The utilization of solar energy technology for obtaining clean water for use of society in remote locations will help in fulfilling the sustainable development goals of the United Nations. Also, promotion of solar energy for the use of society will subside dependency on the fossil fuel or conventional energy. This article deals with the annual energy, exergy, and efficiency analyses of N identical ETCs incorporated conical solar still (NETC‐CSS). The thermal model for the proposed system has been developed based on equating input and output heats for different elements. The developed fundamental equations are fed to the MATLAB computational code. The four weather situations in each month of year for New Delhi climate is considered for the annual analysis. The annual energy, exergy, thermal efficiency, and exergy efficiency for NETC‐CSS are computed to be 1796.61, 170.19 kWh, 38.79%, and 3.94% under optimized values of mass flow rate and number of collectors. Results are compared with earlier published research. Concludingly, the increase in annual energy, exergy, thermal efficiency, and exergy efficiency for NETC‐CSS is 68.03% than modified solar still, 74.14% than conventional conical solar still, 61.12% than modified solar still, and 72.59% than solar still with parabolic trough collector.