The effective design of energy-saving electric motors with efficiency class IE4 and higher requires the use of material characteristics that take into account the core shaping process. Therefore, it becomes necessary to use analytical or numerical models that take into account the change of local properties of Fe-Si material. The aim of the work is to indicate a useful analytical model for estimating the local magnetic permeability of the material, as well as to understand the reasons for these changes. For this purpose, low-loss ferromagnetic materials cut with a guillotine and a laser were tested. Rectangular samples, cut at an angle of 0 degrees in relation to the rolling direction, were subjected to macroscopic and microscopic examinations. Finally, the main reasons for changes in material characteristics for both cutting technologies were indicated. Therefore, the proposed model takes into account not only the cutting technology used, but also the current width of the tested strip, for which the material characteristics are to be determined. The parameters of the analytical model are determined on the basis of a limited number of measurements carried out on samples of a simple geometric shape.