Existence and approximating of common best proximity points of relatively nonexpansive mappings via Ishikawa iteration method
Gabeleh Moosa,
Markin Jack T.,
Rakočevć Vladimir
Abstract:In this article, we study the existence of a common best proximity points for a finite class of cyclic relatively nonexpansive mappings in the setting of Busemann convex spaces. In this way, we extend the main results given in Eldred and Raj (2009) [A.A. Eldred, V.S. Raj, On common best proximity pair theorems, Acta Sci. Math. (Szeged), 75, 707-721] for relatively nonexpansive mappings in Banach spaces to more general metric spaces. We then present a strong convergence theorem of a common best proximity point … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.