We study the constrained minimizing problem of the energy functional related to attractive Schrödinger‐Poisson systems with periodic potentials:
I(m)=infE(ϕ):ϕ∈H1(R3),‖ϕ‖L22=m,
where
Efalse(ϕfalse):=12∫double-struckR3false|∇ϕfalse(xfalse)false|2dx+12∫double-struckR3Vfalse(xfalse)false|ϕfalse(xfalse)false|2dx−14∬double-struckR3×double-struckR3false|ϕfalse(xfalse)false|2false|ϕfalse(yfalse)false|2false|x−yfalse|dxdy−1α+2∫double-struckR3false|ϕfalse(xfalse)false|α+2dx,
with
m>0,
α>0, and
V is a continuous periodic potential. We first give a complete classification of existence and nonexistence of minimizers for the problem. In the mass‐critical case
α=43, we give a detailed description of the limiting behavior of minimizers as the mass tends to a critical value.