2020
DOI: 10.37236/9782
|View full text |Cite
|
Sign up to set email alerts
|

Existence and Hardness of Conveyor Belts

Abstract: An open problem of Manuel Abellanas asks whether every set of disjoint closed unit disks in the plane can be connected by a conveyor belt, which means a tight simple closed curve that touches the boundary of each disk, possibly multiple times. We prove three main results: For unit disks whose centers are both $x$-monotone and $y$-monotone, or whose centers have $x$-coordinates that differ by at least two units, a conveyor belt always exists and can be found efficiently. It is NP-complete to … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?