2022
DOI: 10.3934/eect.2020100
|View full text |Cite
|
Sign up to set email alerts
|

Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations

Abstract: We discuss the existence and uniqueness of mild solutions for a class of quasi-linear fractional integro-differential equations with impulsive conditions via Hausdorff measures of noncompactness and fixed point theory in Banach space. Mild solution controllability is discussed for two particular cases.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
3
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(5 citation statements)
references
References 49 publications
0
3
0
Order By: Relevance
“…There have a lot of papers that considered mild solution on a bounded interval and an unbounded interval (cf. previous works [8–14]). On the other hand, as a nice consequence Olszowy [7] studied the existence of the mild solution for the second‐order parabolic PDE with initial/(BVP) with nonlocal condition of the shape {left leftarrayρτ+Jρ=fτ,ρarrayinP×+arrayρ=0arrayonP×+arrayρ=garrayonP×{τ=0},$$ \left\{\begin{array}{ll}{\rho}_{\tau }+ J\rho =f\left(\tau, \rho \right)& \kern0.30em \mathrm{in}\kern0.5em P\times {\mathbb{R}}_{+}\\ {}\rho =0& \kern0.30em \mathrm{on}\kern0.5em \partial P\times {\mathbb{R}}_{+}\\ {}\rho =g& \kern0.30em \mathrm{on}\kern0.5em P\times \left\{\tau =0\right\},\end{array}\right.…”
Section: Introductionmentioning
confidence: 83%
See 2 more Smart Citations
“…There have a lot of papers that considered mild solution on a bounded interval and an unbounded interval (cf. previous works [8–14]). On the other hand, as a nice consequence Olszowy [7] studied the existence of the mild solution for the second‐order parabolic PDE with initial/(BVP) with nonlocal condition of the shape {left leftarrayρτ+Jρ=fτ,ρarrayinP×+arrayρ=0arrayonP×+arrayρ=garrayonP×{τ=0},$$ \left\{\begin{array}{ll}{\rho}_{\tau }+ J\rho =f\left(\tau, \rho \right)& \kern0.30em \mathrm{in}\kern0.5em P\times {\mathbb{R}}_{+}\\ {}\rho =0& \kern0.30em \mathrm{on}\kern0.5em \partial P\times {\mathbb{R}}_{+}\\ {}\rho =g& \kern0.30em \mathrm{on}\kern0.5em P\times \left\{\tau =0\right\},\end{array}\right.…”
Section: Introductionmentioning
confidence: 83%
“…Then the nonlocal initial value problem (13) has at least one mild solution (𝜌, 𝜚) ∈ H 1 0 (P) × L 2 (P).…”
Section: An Application To Second-order Hyperbolic Pdementioning
confidence: 99%
See 1 more Smart Citation
“…Nesse sentido, foram impostas condições necessárias e suficientes, e por meio da técnica da medida de não compacidade de Hausdorff, do uso do operador resolvente e de teoremas de ponto fixo, obtivemos os resultados desejados. Como fruto dos resultados obtidos nessa etapa, foi publicado o artigo científico intitulado "Existence and Uniqueness of mild solutions for quasilinear fractional integrodifferential equations" [78].…”
Section: Conclusões E Perspectivasunclassified
“…É notável que a área de equações diferenciais fracionárias sejam elas, funcional, de evolução, com impulsos, sem impulsos, com retardo vêm ao longo dos anos se estabelecendo de forma rica e positiva, não somente pela quantidade de pesquisadores e trabalhos publicados, mas pela qualidade e impacto desses resultados. Podemos aqui destacar alguns trabalhos sobre existência, unicidade, estabilidade, atratividade, controlabilidade de soluções de equações diferenciais fracionárias [12,15,17,21,30,35,47,51,55,57] e suas referências.…”
Section: Introductionunclassified