“…The nonlocal boundary conditions are found to be of great utility in modeling the changes happening within the domain of the given scientific phenomena, while the concept of integral boundary conditions is applied to model the physical problems, such as blood flow problems on arbitrary structures and ill-posed backward problems. For some recent works on fractional order differential equations involving Riemann-Liouville, Caputo, and Hadamard type fractional derivatives, equipped with classical, nonlocal, and integral boundary conditions, we refer the reader to a series of papers [10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28] and the references cited therein.…”